skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yamashita, Shigeru"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bridgmanite, the most abundant mineral in the lower mantle, can play an essential role in deep-Earth hydrogen storage and circulation processes. To better evaluate the hydrogen storage capacity and its substitution mechanism in bridgmanite occurring in nature, we have synthesized high-quality single-crystal bridgmanite with a composition of (Mg0.88Fe0.052+Fe0.053+Al0.03)(Si0.88Al0.11H0.01)O3 at nearly water-saturated environments relevant to topmost lower mantle pressure and temperature conditions. The crystallographic site position of hydrogen in the synthetic (Fe,Al)-bearing bridgmanite is evaluated by a time-of-flight single-crystal neutron diffraction scheme, together with supporting evidence from polarized infrared spectroscopy. Analysis of the results shows that the primary hydrogen site has an OH bond direction nearly parallel to the crystallographic b axis of the orthorhombic bridgmanite lattice, where hydrogen is located along the line between two oxygen anions to form a straight geometry of covalent and hydrogen bonds. Our modeled results show that hydrogen is incorporated into the crystal structure via coupled substitution of Al3+ and H+ simultaneously exchanging for Si4+, which does not require any cation vacancy. The concentration of hydrogen evaluated by secondary-ion mass spectrometry and neutron diffraction is ~0.1 wt% H2O and consistent with each other, showing that neutron diffraction can be an alternative quantitative means for the characterization of trace amounts of hydrogen and its site occupancy in nominally anhydrous minerals. 
    more » « less
  2. Abstract Acoustic compressional and shear wave velocities (VP, VS) of anhydrous (AHRG) and hydrous rhyolitic glasses (HRG) containing 3.28 wt% (HRG-3) and 5.90 wt% (HRG-6) total water concentration (H2Ot) have been measured using Brillouin light scattering (BLS) spectroscopy up to 3 GPa in a diamond-anvil cell at ambient temperature. In addition, Fourier-transform infrared (FTIR) spectroscopy was used to measure the speciation of H2O in the glasses up to 3 GPa. At ambient pressure, HRG-3 contains 1.58 (6) wt% hydroxyl groups (OH–) and 1.70 (7) wt% molecular water (H2Om) while HRG-6 contains 1.67 (10) wt% OH– and 4.23 (17) wt% H2Om where the numbers in parentheses are ±1σ. With increasing pressure, very little H2Om, if any, converts to OH– within uncertainties in hydrous rhyolitic glasses such that HRG-6 contains much more H2Om than HRG-3 at all experimental pressures. We observe a nonlinear relationship between high-pressure sound velocities and H2Ot, which is attributed to the distinct effects of each water species on acoustic velocities and elastic moduli of hydrous glasses. Near ambient pressure, depolymerization due to OH– reduces VS and G more than VP and KS. VP and KS in both anhydrous and hydrous glasses decrease with increasing pressure up to ~1–2 GPa before increasing with pressure. Above ~1–2 GPa, VP and KS in both hydrous glasses converge with those in AHRG. In particular, VP in HRG-6 crosses over and becomes higher than VP in AHRG. HRG-6 displays lower VS and G than HRG-3 near ambient pressure, but VS and G in these glasses converge above ~2 GPa. Our results show that hydrous rhyolitic glasses with ~2–4 wt% H2Om can be as incompressible as their anhydrous counterpart above ~1.5 GPa. The nonlinear effects of hydration on high-pressure acoustic velocities and elastic moduli of rhyolitic glasses observed here may provide some insight into the behavior of hydrous silicate melts in felsic magma chambers at depth. 
    more » « less